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Graph Construction: An Empirical Investigation on Setting the 

Range of the Y-Axis 

Jessica K. Witt 
Colorado State University 

Graphs are an effective and compelling way to present scientific results.  With few rigid guide-
lines, researchers have many degrees-of-freedom regarding graph construction.  One such choice 
is the range of the y-axis.  A range set just beyond the data will bias readers to see all effects as 
big.  Conversely, a range set to the full range of options will bias readers to see all effects as small.  
Researchers should maximize congruence between visual size of an effect and the actual size of 
the effect.  In the experiments presented here, participants viewed graphs with the y-axis set to 
the minimum range required for all the data to be visible, the full range from 0 to 100, and a range 
of approximately 1.5 standard deviations.  The results showed that participants’ sensitivity to the 
effect depicted in the graph was better when the y-axis range was between one to two standard 
deviations than with either the minimum range or the full range.  In addition, bias was also 
smaller with the standardized axis range than the minimum or full axis ranges.  To achieve con-
gruency in scientific fields for which effects are standardized, the y-axis range should be no less 
than 1 standard deviations, and aim to be at least 1.5 standard deviations.   
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One way to lie with statistics is to set the range of the 
y-axis to form a misleading impression of the data.  A 
range set too narrow will exaggerate a small effect and 
can even make a non-significant trend appear to be a sub-
stantial effect (Pandey, Rall, Satterthwaite, Nov, & Ber-
tini, 2015).  Yet the default setting of many statistical and 
graphing software packages automatically sets the range 
as narrow as the data will allow.  The problem of creating 
misleading graphs persists even when the full range is 
shown instead.  As shown in the studies reported below, 
a range set too wide also creates a misleading impression 
of the data by making effects seem smaller than they are.  
Here, I argue that for scientific fields that use standard-
ized effect sizes and adopt Cohen’s convention that an ef-
fect of d = 0.8 is big, the range of the y-axis should be ap-
proximately 1.5 standard deviations (SDs). 

How should the y-axis range of a graph be deter-
mined?  Graph construction should account for the visual 
experience of the people reading the graphs (Cleveland 
& McGill, 1985; Kosslyn, 1994; Tufte, 2001) and the 
strong link between perception and cognition (Barsalou, 
1999; Glenberg, Witt, & Metcalfe, 2013).  When the visual 
size of the effect aligns with the actual size of the effect, 
the person reading the graph does not have to exert men-
tal effort to decode effect size from the graph. Instead, the 
size of the effect is processed automatically.  This in-
creases graph fluency by making it easier to understand 
that an effect is big when it looks big and an effect is small 
when it looks small.   

To increase graph fluency, the range of the y-axis 
should be selected to maximize compatibility between 
visual size and actual effect size (Kosslyn, 1994; Pandey 
et al., 2015; Tufte, 2001).  However, the current literature 
fails to provide clear guidelines on how to achieve this 
compatibility.  For example, some recommend displaying 
only the relevant range so that the axis goes from just be-
low the lowest data point to just above the highest data 
point (Kosslyn, 1994).  This would not achieve the rec-
ommended compatibility because small effects would 
look big.  Others assert that the y-axis should always start 
from 0, particularly for bar graphs (Few, 2012; Pandey et 
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al., 2015; Wong, 2010).  This too could fail to achieve 
compatibility by making effects look too small.  

In the case of scientific fields for which effect size is 
standardized based on standard deviation, the range of 
the y-axis should be a function of the standard deviation 
(SD). In behavioral sciences such as psychology and eco-
nomics, for example, the mean effect size is approxi-
mately half a SD (Bosco, Aguinis, Singh, Field, & Pierce, 
2015; Open Science Collaboration, 2015; Paterson, 
Harms, Steel, & Crede, 2016), and a standardized effect 
size of d = .8 is considered a big effect (Cohen, 1988). 
Consequently, an appropriate range for the y-axis would 
be one to two SDs, which would be plotted as the group 
mean ± 0.75 SD (or ±0.5 – 1 SDs). With this range, big 
effects such as a Cohen’s d of .8 would look big and small 
effects of d = .3 would look small.  In other words, this 
range would help achieve compatibility between the vis-
ual impression of the size of the effect and the actual size 
of the effect. 

Empirical Studies 

The effect of visual-conceptual size compatibility on 
graph fluency was empirically tested in 57 participants 
across 5 experiments (see Table 1).  The participants 
were naïve college students, which serves as an appro-
priate sample given that scientific results should be ac-
cessible and comprehensible to this population and not 
just to experts in one’s field.   

The stimuli were bar or line graphs that had been con-
structed from simulated data.  Data were simulated from 
two (hypothetical) groups of participants by sampling 
from normal distributions in R (R Core Team, 2017).  For 
one group, the data were drawn from a normal distribu-
tion with a mean of 50 and a standard deviation of 10 (as 
in a memory experiment with mean performance of 50% 

and SD of 10%).  For the other group, the data were 
drawn from a normal distribution with a standard devia-
tion of 10 and the mean at 49, 47, 45, or 42.  These means 
correspond to effect sizes of d = 0.1, 0.3, 0.5, and 0.8, re-
spectively.  In Experiments 3-5, the mean of 49 (d = 0.1) 
was replaced with the mean of 50 (d = 0).  In Experi-
ments 2-5, the data were re-sampled if the attained effect 
size differed by more than 0.1 from the intended effect 
size.  Data were simulated 10 times for each of the four 
effect sizes to create 40 sets of data for each Experiment.  
In Experiments 1-3, the means of the simulated data 
were displayed as a bar graph depicting two groups of 
participants who engaged in different study strategies 
(spaced versus massed; see Figure 1).  In Experiments 4-
5, the means were used to determine the end points of a 
line graph, and the x-axis was labeled as “hours spent 
studying”.  For each set of data, three graphs were con-
structed that varied in the range of the y-axis.  The full 
condition showed the full range from 0 to 100 on a hypo-
thetical memory test.  The minimal condition showed the 
smallest range necessary to see the data.  The standard-
ized condition was centered on the group mean and ex-
tended by one to two SDs in either direction (the exact 
value differed across experiments, see Table 1 or the Ap-
pendix).  Figure 1 shows several examples of graphs that 
served as stimuli.  In Experiment 3, error bars were also 
included and explained to the participants.  Within an ex-
periment, the same set of 120 graphs (3 axis ranges x 4 
effect sizes x 10 sets) were shown to the participants.  
Graphs were shown one at a time, order was randomized, 
and participants completed 4 blocks of 120 trials.  In all 
experiments, the participants’ task was to indicate 
whether there was no effect, a small effect, a medium ef-
fect, or a big effect for each graph by pressing 1, 2, 3 or 4 
on the keyboard. 

 

 
Table 1.   
Overview of the five experiments.   

Experiment N Effect sizes Graph Type Standardized condition1 
1 9 0.1, 0.3, 0.5, 0.8 Bar graph 2 SDs 
2 14 0.1, 0.3, 0.5, 0.8 Bar graph 1.4 SDs 
3 13 0, 0.3, 0.5, 0.8 Bar graph with error bars 1.2 SDs 
4 20 0, 0.3, 0.5, 0.8 Line graph 1.4 SDs 
5 15 0, 0.3, 0.5, 0.8 Line graph 1 SD 

Notes. 1This refers to the range depicted in the standardized condition, so a range of 1.4 SDs is when the graph was centered on the 
grand mean and extended 0.7 SDs in either direction. 
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Figure 1.  Sample stimuli in the experiments on bar graphs and on line graph.  The bar graphs show final test 
score as a function of whether study style was spaced or massed.  The line graphs show final test score as a 
function of hours spent studying from 1 to 4.  Within each experiment, the same data were plotted using the 
full range from 0-100, the standardized range (in this case, the group mean +/- 0.7 SD), or the minimal range 
necessary to see the data.  In this example, a medium effect (Cohen’s d = 0.5) was simulated for the bar 
graphs (top row) and a small effect (Cohen’s d = 0.3) was simulated for the line graphs (bottom row).  The 
participant’s task was to indicate whether there was no effect, a small effect, a medium effect, or a big effect.  

 
 
Graph fluency was measured using linear regressions 

rather than accuracy because regression coefficients 
have the advantage that they provide two separate 
measures.  The slope provides an estimate of sensitivity 
to the magnitude of the effect depicted in the plot.  A 
steeper slope indicates better sensitivity to effect size 
than a shallower slope.  The intercept provides an esti-
mate of bias.  Two graphs could lead to similar levels of 
sensitivity but different levels of bias.  Separate linear re-
gressions were calculated for each participant for each y-
axis range condition (full, standardized, and minimal).  In 
each regression, the dependent measure was response 
(on the scale of 1 to 4).  The effect sizes were recoded to 
also be on a scale from 1 to 4 then centered by subtract-
ing 2.5 so that perfect performance would produce a re-
gression coefficient for the slope of 1 and an intercept of 
2.5.   

Figure 2 shows the mean slope coefficients across all 
5 experiments.  Sensitivity was best for the standardized 
graphs and worse for the full range graphs.  Participants 
were better able to assess the size of the effect depicted 
in the graph for the standardized graphs, than for the 
minimal or full graphs.  Participants were also less biased 
when viewing the standardized graphs.  Figure 3 shows 
the mean bias across all 5 experiments.  Bias scores were 
calculated as a percent bias based on the coefficients for 
the intercept.  A negative score indicates a bias to re-
spond that effects were small, and a positive score indi-
cates a bias to respond that the effects were big.  For the 
full graphs, there was a large bias to respond that the ef-
fects were small.  When looking at graphs with the full  
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Figure 2.  Sensitivity is plotted as a function of graph axis condition for the three types of graphs across all 5 experiments.  
Sensitivity was measured as the coefficient for the slope from regressions of actual effect size on estimated effect size.  
Only trials for which the graph depicted an effect size greater than d = 0.1 are included (see supplementary materials 
for all the data). A higher sensitivity score corresponds to better performance, and a coefficient of 1 corresponds to 
perfect performance.  A coefficient of 0 indicates chance performance.  In the left panel, mean sensitivity across all ex-
periments is shown.  Error bars are 1 SEM calculated within-subjects, and are approximately the same size as the sym-
bols.  The y-axis range is 3 SD.  The right panel shows sensitivity for each participant for each experiment.  The data are 
color-coded by experiment (e.g. red = Experiment 1, orange = Experiment 2) and are also laterally positioned from left 
to right within graph type category.  Each point corresponds to one participant, and each participant has one symbol 
for each of the three graph types.  The solid horizontal line at 0 shows the point of no sensitivity and the dashed hori-
zontal line at 1 shows the point of perfect sensitivity. 
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Figure 3.  Bias (as a percentage) is plotted as a function of graph axis condition for the three types of graphs across all 
5 experiments.  A negative bias corresponds to responding that effects are smaller than they are, and a positive bias 
corresponds to responding that effects are bigger than their actual size.  In the left panel, mean bias across all experi-
ments is shown.  Error bars are 1 SEM calculated within-subjects, and are approximately the same size as the symbols.  
The y-axis range is 4 SD.  The right panel shows bias for each participant for each experiment.  The data are color-coded 
by experiment (e.g. red = Experiment 1, orange = Experiment 2) and are also ordered from left to right within graph 
type category.  Each point corresponds to one participant, and each participant has one symbol for each of the three 
graph types. 
 
 
range, participants responded that almost all effects 
(86%) were null or small.  For the minimal graphs, there 
was a large bias to respond that the effects were substan-
tial.  When looking at graphs with the minimal range for 
Cohen’s d was 0.10 – 0.80, participants responded that 
the effect was big on 49% of the trials.  In contrast, there 
was much less bias with the standardized graphs (see 
Supplemental Materials). 

Discussion 

The visual impression of the size of an effect has a 
strong influence on the judged size of an effect.  When the 
visual impression was compatible with the actual effect 
size, judgments of effect size were better calibrated and 
less biased compared with the typical default setting of 
showing the minimum range to display the data and the 
setting of showing the full potential range.  Based on the 
current studies, the recommendation is to center the y-
axis on the grand mean and extend the range 0.75 SDs in 
either direction so that the range of the y-axis is 1.5 SDs.   

The current studies show improved calibration to ef-
fect size and reduced bias in estimating effect size when 
the range of the y-axis was centered on the grand mean 
of the data and extended approximately 0.7 SDs in either 
direction.  The various studies used slightly different ex-
tensions ranging from 0.5 SDs to 1 SD.  There were not 
large detectable differences in calibration or bias de-
pending on the exact range that was used, so the precise 
value of the y-axis range might not be critical.  Rather, the 
key feature is that the visual size aligns with the actual 
size of the effect.  The specific range to be used might vary 
as a function of the size of the error bars (the range 
should be large enough to encompass them), the size of 
the effect (the range would have to be extended by 1.5 
SDs for particularly large effects, such as was done with 
the current results), if doing so would make the range in-
clude nonsensical numbers (such as negative numbers 
for performance), and to achieve a consistent scale 
across multiple graphs to enhance across-graph compar-
isons.  Given that the exact range in terms of SD could 
vary from plot to plot, it could be useful to indicate the 
range in SD units in the figure caption.  This indication 
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would be particularly useful in cases for which research-
ers neglect to include error bars.   

The current experiments explored graphs of stimu-
lated data from between-subjects designs.  The recom-
mendations likely generalize to within-subject designs 
with the caveat that the y-axis should be a function of the 
denominator used to calculate the within-subjects effect 
size.  For example, the denominator for Cohen’s dz is the 
square root of the sum of the squares of the standard de-
viations minus the product of the standard deviations 
and the correlation between the two measures.  Graphs 
plotting within-subjects data could be ± 0.75 times this 
denominator (or one of the other suggested measures for 
within-subjects effects sizes; e.g. Lakens, 2013).   In cases 
for which there are both between-subjects and within-
subjects factors, the researchers will have to decide 
which denominator to use for the range depending on 
which effect they most want to emphasize.   

It is debatable whether the recommendation offered 
here should be employed with bar graphs.  Some have 
shown that graphs that start at a position other than 0 
are deceptive (e.g. Pandey et al., 2015).  The idea is that 
bar graphs should always start at 0 because the height of 
the bar signifies the value of the condition being repre-
sented. When the y-axis starts at a value greater than 0, 
the height of the bar corresponds to the difference be-
tween the condition’s value and the starting point, rather 
than the condition’s value itself.  Consider the following 
example: imagine that group A scored 70% on a memory 
test and group B scored 60%.  On a plot for which the y-
axis starts at 50%, group A’s score would appear twice as 
big as group B’s score, even though they only scored 10% 
higher.  The issue at hand concerns the visual impression 
of the data.  If the graph gives the impression that the dif-
ferences are big, and that aligns with the size of the effect, 
the graph would be produce compatibility between vi-
sion and true effect size.  If, however, the impression is 
that one group’s performance was twice as good as the 
other group’s performance, this would produce a mis-
leading impression of the data.  The current experiments 
cannot speak to which impression was experienced be-
cause participants were asked to rate the size of the effect 
as being no effect, small, medium, or big, rather than 
quantifying the size of one bar relative to another.  The 
specific task used here did not permit measuring the 
spontaneous impression given by the graphs.  One option 
is for researchers to use alternative types of graphs to 
avoid the issue.  Alternatives include point graphs and a 
newly-designed (but yet unpublished) type of graph 
called a hat graph (Witt, 2018).   

The recommendation to set the y-axis range to be 1.5 
SDs does not generalize to fields for which the SD is un-
known or irrelevant for interpreting effect size.  For these 

fields, previous recommendations such as Tufte’s Lie De-
tector Ratio could be appropriate (Tufte, 2001).  But for 
scientific fields that rely on standard deviation to inter-
pret effect size, this is the first empirically-based recom-
mendation that provides clear guidelines for construct-
ing graphs to communicate the magnitude of the effects.   

Maximizing compatibility between visual size and 
conceptual size improved comprehension of the effects 
shown in the graphs.  The data presented in the graphs 
were exactly the same, yet participants were less biased 
and were more sensitive to the size of the depicted effect 
when the axis range was one to two SDs.  Furthermore, 
emphasizing SD and effect size in graph construction 
could help shift researchers’ focus to effect size, rather 
than statistical significance.  Indeed, effect size (as meas-
ured with Cohen’s d) provides a better measure for dis-
criminating real effects from null effects than p values or 
Bayes factors (Witt, in press).  Such a shift could help 
guard against practices that have contributed to recent 
failures to replicate in various scientific fields (Camerer 
et al., 2016; Open Science Collaboration, 2015).   

In his famous book on how to lie with statistics, Huff 
noted that as long as the y-axis is correctly labeled, “noth-
ing has been falsified – except the impression that it 
gives” (Huff, 1954, p. 62).  The impression matters.  Re-
searchers should select the range of the y-axis so that 
small effects look small and big effects look big (based on 
the field’s adopted conventions).  A simple way to do this 
is to set the range to be 1.5 (or more) standard deviations 
of the dependent measure.  That this improves graph 
comprehension is both intuitive and is now supported by 
empirical evidence. 
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Appendix: Experimental Details 

Experiment 1: Bar Graphs with Axis Range of 2 SD 

Participants judged the size of effects depicted in bar 
graphs that were constructed with three axis range op-
tions. 
 
Method 

Participants.  Nine students in an introductory psy-
chology course participated in exchange for course 
credit.  In this and all subsequent experiments, the num-
ber of participants was maximized within a pre-deter-
mined time limit. 

Stimuli and Apparatus.  Graphs were constructed in R 
(R Core Team, 2017).  For each graph, two means were 
generated.  One mean was 50, and the other mean was 
49, 47, 45, or 42.  These equated to effect sizes of Cohen’s 
d = .1, .3, .5, and .8, respectively.  To add some noise to 
each graph, each mean was drawn from a normal distri-
bution centered on the desired mean with 1000 samples 
and a standard deviation of 10.  The means were pre-
sented in bar graphs (see Figure A1).  The left bar was 
white and labeled “Spaced” and the right bar was black 
and labeled “Massed”.  For each set of simulated data, 
three bar graphs were constructed that corresponded to 
the three y-axis range conditions.  For the full graphs, the 
y-axis range went from 0 to 100.  For the minimal graphs, 
the y-axis went from the smallest data value minus 1 to 
the largest data value plus 1.  For the standardized 
graphs, the mean of the two groups was calculated, and 1 
SD (10) was added in either direction to set the y-axis 
range.  This process of creating 3 graphs for each set of 
data was repeated 10 times for each of the 4 effect sizes 
for a total of 120 graphs.  Graphs were 500 pixels by 500 
pixels and were shown on a 19” computer monitors with 
1028 x 1024 resolution.   

Procedure.  After providing informed consent, each 
participant was seated at a computer.  They were given 
the following instructions: “You will see graphs showing 
the effect of study style on final test performance.  There 
were two study styles. Massed is like cramming 
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Exp 
(SD 

Range) Full Standardized Minimal 
1 

(2) 

   
2 

(1.4) 

   
3 

(1.2) 

   
4 

(1.4) 
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5 
(1) 

   
 

Figure A1.  Sample stimuli for each of the 5 experiments.  Each row corresponds to one experiment and shows a single 
set of a data plotted in the three different ways (full, standardized, and minimal).  In all cases, the data show a medium 
effect (Cohen’s d = 0.5).  The number in parentheses under the experiment number indicates the range of the stand-
ardized condition. 

 

everything at once at just before the exam.  Spaced refers 
to studying a little bit every day for weeks before the 
exam.  The y-axis shows final test performance, with 
higher value meaning better performance.  For each 
graph, indicate if study style had 1. No effect, 2. A small 
effect, 3. A medium effect, 4. A big effect on final perfor-
mance.  Ready? Press ENTER”.   

A trial began with a fixation cross at the center of the 
screen for 500ms.  The graph was then shown.  Above the 
graph, text reminded participants of the four response 
options.  The graph remained until participants made a 
response, at which point, the graph disappeared and a 
blank screen was shown for 500ms.  Each block of trails 
consisted of the presentation of each of the 120 graphs (3 
graph types x 4 depicted effect sizes x 10 repetitions).  
Order was randomized within block, and participants 
completed 4 blocks for a total of 480 trials. 

Results and Discussion 

One participant only completed 431 trials, but their 
data were still included.  The depicted effect size was re-
coded on a scale from 1 to 4 to be consistent with the 
scale of the response.  The smallest effect size (d = .1) 
was coded as 1.5 to account for the idea that this effect is 
smaller than a small effect but bigger than no effect.  In 
later experiments, these graphs were replaced with 
graphs for which there was no effect instead of d = .1.   

For each participant for each of the 3 axis range con-
ditions, the data were submitted to separate linear re-
gressions with estimated effect size as the dependent fac-
tor and actual effect size (recoded on a scale from 1-4 
then centered by subtracting 2.5) as the independent fac-
tor.   The regressions produced two coefficients for each 

participant for each axis range condition.  The slope indi-
cates sensitivity to the size of the effect.  A slope of 1 in-
dicates perfect sensitivity.  A slope less than 1 indicates 
attenuated sensitivity.  The intercept indicates any bias 
to see effects as smaller or larger than their true size.  One 
participant had slopes that were identified as outliers in 
the full and minimal conditions because they were 
greater than 1.5 times the interquartile range for each 
condition.  This participant was excluded from the analy-
sis (despite being the best performer in the group) be-
cause their data were not typical of the rest of the sample.  
Another participant had a slope less than 1.5 times the 
interquartile range in the full condition, and was also ex-
cluded for not being typical of the rest of the sample. 

The coefficients were analyzed using paired-samples 
t-tests to compare each graph condition to the others.  
Analyses were done in R (R Core Team, 2017).  Bayes fac-
tors were calculated using the BayesFactor package in R 
with a medium prior (Morey, Rouder, & Jamil, 2014).  A 
Bayes factor greater than 3 indicates moderate evidence, 
and a Bayes factor greater than 10 indicates substantial 
evidence for the alternative hypothesis over the null hy-
pothesis.  Conversely, a Bayes factor less than .33 and less 
than .10 indicates moderate and substantial evidence for 
the null hypothesis over the alternative hypothesis.  Ef-
fect sizes were calculated using the recommendations of 
Lakens (2013), and 95% confidence intervals (CIs) on 
the effect size were calculated using the cohen.d.ci func-
tion in the PSYCH package (Revelle, 2018).   

The standardized graphs produced significantly 
greater slopes than the full graphs, t(6) = 3.84, p = .009, 
dz = 1.45, 95% CIs [.33, 2.51], Bayes factor = 7.54 (see  
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Figure A2.  Mean response is plotted as a function of de-
picted effect size and graph type for Experiment 1.  Er-
ror bars are 1 SEM calculated within-subjects. Solid 
lines represent linear regressions for depicted effects d 
≥ .3. Dashed lines represent linear regressions for de-
picted effects less than d ≤ .3. 

 

Figure A2).  With the standardized y-axis range, partici-
pants were more sensitive to the differences in actual ef-
fect size (M = .47, SD = .11) compared with graphs that 
showed the full range from 0 to 100 (M = .30, SD = .07).  
Sensitivity was also better for the standardized graphs 
than the minimal graphs, t(6) = 3.61, p = .011, dz = 1.37, 
95% CIs [.28, 2.40], Bayes factor = 6.17.  The minimal 
graphs (M = .28, SD = .04) produced sensitivity similar 
to the full graphs, p = .51, dz = .26, 95% CIs [-.50, 1.01], 
Bayes factor = 0.43. 

These data show an advantage for the standardized 
graphs because participants were more sensitive to dif-
ferences among magnitudes of the depicted effect sizes 
with the standardized graphs than with the full or mini-
mal graphs.  However, the standardized graphs led to 
performance that was far from perfect.  The slope was 
.47, and perfect performance would have produced 
slopes of 1.  Thus, even though the standardized graphs 
signify an improvement over the other two options, more 
work is still necessary to improve graph comprehension. 

Another advantage for the standardized graphs can 
be seen with respect to bias.  Bias scores were calculated 
as a percentage score of underestimation (negative val-
ues) and overestimation (positive values).  They were 

calculated as the participant’s coefficient for the inter-
cept minus the true intercept (2.5) divided by the true 
intercept.  There were significant differences between 
the bias scores across all conditions, ps < .003.  The bias 
scores for the full graphs was negative (M = -27%, SD = 
10%) and significantly below 0, t(6) = -7.01, p < .001, dz 
= 2.64, 95% CIs [1.00, 4.27], Bayes factor = 82.  The bias 
scores for the minimal graphs were positive (M = 36%, 
SD = 19%) and significantly above 0, t(6) = 4.91, p = 
.003, dz = 1.86, 95% CIs [.57, 3.10], Bayes factor = 19.  In 
contrast, the bias scores for the standardized graphs 
were significantly less biased than in the other conditions 
(ps < .003), and were not significantly different from 0 
(M = 1%, SD = 4%), t(6) = 0.47, p = .66, dz = .18, 95% 
CIs [-.58, .82], Bayes Factor = 0.39.  With the full graphs, 
most effects looked like small effects.  Indeed, 91% of the 
trials with the full graphs were labeled as showing no ef-
fect or a small effect.  With the minimal graphs, 58% of 
the effects were labeled as big effects and 88% were la-
beled as medium or big.  With the standardized graphs, 
small effects looked small and medium effects looked me-
dium (see Figure A3). However, the big effects only 
looked medium.  Thus, the experiment was replicated but 
with a smaller range in the standardized condition to de-
termine if that would improve detection of big effects. 

Experiment 2: Bar Graphs with Axis Range of 1.4 SD 

Standardized graphs, for which the y-axis range is a 
function of the standard deviation, produced better sen-
sitivity and less bias in participants who judged the size 
of the depicted effect compared with graphs that showed 
the full range and graphs that showed only the minimal 
range necessary to see the data.  However, sensitivity 
with the standardized graphs was still below perfect per-
formance.  In this experiment, the range of the standard-
ized graphs was decreased from 2 SDs to 1.4 SDs.   

Method 

Fourteen students in an introductory psychology 
course participated in exchange for course credit.  Every-
thing was the same in Experiment 1 except for the con-
struction of  the standardized graphs, for which the y-axis 
range went from the group mean minus 0.7 SD to the 
group mean plus 0.7 SD (see Figure A1).  Thus, the stand-
ardized range was 1.4 SD (instead of 2 SD as in Experi-
ment 1).  In addition, the simulated data were evaluated 
to ensure that the outcomes were similar to the intended 
outcomes.  The effect size of the simulated data were 
compared to the intended effect size, and if they differed 
by more than 0.1, the data were resampled until the dis-
crepancy was less than 0.1.  Participants completed 4 
blocks of 120 trials, and order was randomized within 
block.



GRAPH CONSTRUCTION: AN EMPIRICAL INVESTIGATION ON SETTING THE RANGE OF THE Y-AXIS 11 

 
 

Figure A3.  Response is plotted as a function of depicted effect size for the three types of axis range conditions (full, 
minimal, and standardized) for Experiment 1.  The bottom right panel shows the correct response.  Response was en-
tered as 1 (no effect), 2 (small effect), 3 (medium effect), and 4 (big effect).  Each point corresponds to one partici-
pant’s response on one trial.  The data have been jittered along both axes to enable visibility. 

 

Results and Discussion 

The data were analyzed as before.  Three participants 
had a slope that was deemed an outlier for being beyond 

at least 1.5 times the interquartile range for the full or 
minimal graphs.   

The slope, which indicates sensitivity to the size of the 
effect in the graph, was greater for the standardized 
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graphs (M = .54, SD = .17) than the full graphs (M = .31, 
SD = .08), t(10) = 3.46, p = .006, dz = 1.04, 95% CIs [.28, 
1.77], Bayes factor = 9.00 (see Figure A4).  Sensitivity 
was also greater for the standardized graphs than the 
minimal graphs (M = .30, SD = .06), t(10) = 4.07, p = 
.002, dz = 1.23, 95% CIs [.42, 2.00],  Bayes factor = 20.  
Replicating Experiment 1, the current data show that set-
ting the range of the y-axis to be a function of the stand-
ard deviation, rather than the full range of options or the 
minimal range necessary to show the data, improved 
graph comprehension.  Recall, participants were not 
asked to indicate how big the effect looked but rather 
how big the effect was.  Full and minimal graphs both 
produced misleading impressions of the data that se-
verely attenuated sensitivity to effect size.  Simply setting 
the range of the y-axis in relation to the standard devia-
tion improved readers’ sensitivity to the data. 

 

 

Figure A4.  Mean response is plotted as a function of de-
picted effect size and graph type for Experiment 2.   Er-
ror bars are 1 SEM calculated within-subjects. Solid 
lines represent linear regressions for depicted effects d 
≥ .3. Dashed lines represent linear regressions for de-
picted effects less than d ≤ .3. 

 

Bias was again found for the full and minimal graphs 
but not the standardized graphs.  For the full graphs, the 
bias was to underestimate effect size by 28% (SD = 9%), 
t(10) = -10.51, p < .001, dz = 3.17, 95% CIs [1.67, 4.64], 
Bayes factor > 100.  Indeed, of all the trials with the full 
graphs, the effect was labeled as small or no effect on 
90% of responses.  The bias was of a similar magnitude 

but in the opposite direction for the minimal graphs, 
t(10) = 4.91, p < .001, dz = 1.48, 95% CIs [.59, 2.33], 
Bayes factor = 61.  With the minimal graphs, participants 
overestimated the size of the effects by 31% (SD = 21%).  
Over half of all effects with the minimal graphs were la-
beled big (53%), and 81% were labeled as medium or 
big.  In contrast, the bias was much smaller (M = 6%, SD 
= 9%) for the standardized graphs, and only marginally 
significantly different from 0, t(10) = 2.13, p = .059, dz 
= .64, 95% CIs [-.02, 1.28], Bayes factor = 1.50.  The bias 
with the standardized graphs was far less than the biases 
observed with the full and minimal graphs, ps < .001.   

The evidence thus far is clear: graphs with a y-axis 
range that is a function of the standard deviation pro-
duces better sensitivity and less bias in participants 
when they are tasked with judging the size of an effect, 
compared with graphs that present the full range and 
with graphs that present only the minimal range neces-
sary to view all of the data. 

Experiment 3: Bar Graphs with Error Bars 

The graphs in Experiments 1 and 2 did not contain er-
ror bars.  As a result, the graphs did not contain enough 
information to know if an effect was null, small, medium, 
or big.  This was a conscious decision given that introduc-
tory psychology students might not know how to inter-
pret error bars.  Yet, it is necessary to know if standard-
ized graphs still produce an advantage even when there 
is enough information presented in the graphs to be able 
to accurately answer the question.  In addition, the 
graphs with the smallest effects in Experiments 1 and 2 
had the awkward feature of being bigger than no effect 
but smaller than a “small” effect, so it was unclear 
whether the correct answer should be 1 or 2.  This ambi-
guity was eliminated in the current experiment. 

Method 

Thirteen students in an introductory psychology 
course participated in exchange for course credit.   

Graphs were constructed similarly as in Experiment 2 
with the following exceptions.  The four effect sizes that 
were modeled were Cohen’s d = 0, .3, .5, and .8, which 
corresponds to no effect, a small effect, a medium effect, 
and a big effect, respectively.  The data were simulated as 
coming from two independent groups of 100 partici-
pants.  The mean used to model the data for the hypothet-
ical group that used the spaced studying strategy was al-
ways 50 (as in 50% accuracy on a memory test).  The 
mean used to model the data for the hypothetical group 
that used the massed studying strategy was 50 minus 0, 
3, 5, or 8 depending on the effect size being modeled.  Us-
ing these means and a SD of 10, data were sampled from 
a normal distribution and summarized for the graphs.  
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Error bars were calculated as 95% confidence intervals.  
In addition to the instructions given in Experiments 1 
and 2, participants were also told the following: “Im-
portant! An effect is statistically significant if p < .05.  
However, you can also assess statistical significance by 
looking at error bars.  Error bars are lines that extend 
from the mean of each condition.  The mean of each con-
dition is shown by the top of the bar.  If the error bar from 
one condition overlaps the mean from the other condi-
tion, the effect is NOT significant.  If neither bar overlaps 
the mean of the other condition, then the effect is signifi-
cant.  The farther apart the error bars, the bigger the ef-
fect.”  Note that this rule of thumb is overly simplified.  
There can be cases for which the error bars overlap but 
the effect is statistically significant at the p < .05 level 
(Cumming & Finch, 2005), but this level of nuance was 
not presented to the participants. 

For each set of simulated data, 3 graphs were con-
structed.  For the full graphs, the y-axis range went from 
0 to 100.  For the standardized graphs, the y-axis range 
went from the grand mean minus 0.6 SD to the grand 
mean plus 0.6 SD.  For the minimal graphs, the bottom of 
the y-axis range was the smallest combination of the 
mean minus the lower confidence interval minus 0.1, and 
the top of the range was the biggest combination of the 
mean plus the upper confidence interval plus 0.1.  Partic-
ipants completed 4 blocks of 120 randomized trials. 

 

Results and Discussion 

The data were analyzed as before.  One participant 
had a negative slope for the standardized graphs, and an-
other participant had a high slope for the full graphs.  
Both were 1.5 times beyond the interquartile range and 
excluded from analyses.   

The slopes were steeper, showing better sensitivity, 
for the standardized graphs (M = .62, SD = .19) com-
pared with the full graphs (M = .24, SD = .09) and the 
minimal graphs (M = .55, SD = .20).  The difference in 
slopes between the standardized and full graphs was sig-
nificant, t(10) = 7.76, p < .001, dz = 2.34, 95% CIs [1.16, 
3.50], Bayes factor > 100.  The difference in slopes be-
tween the standardized versus minimal graphs was also 
significant, t(10) = 3.09, p = .011, dz = .93, 95% CIs [.20, 
1.63], Bayes factor = 5.46.  Even though all the infor-
mation was the same across the three graph conditions 
and even though this information was sufficient for de-
termining the size of each effect, participants were better 
able to determine effect size when the range of the y-axis 
was a function of the standard deviation (see Figure A5).   

 

Figure A5.  Mean response is plotted as a function of 
depicted effect size and graph type for Experiment 3.  Er-
ror bars are 1 SEM calculated within-subjects. Solid lines 
represent linear regressions for depicted effects d ≥ .3. 
Dashed lines represent linear regressions for depicted ef-
fects less than d ≤ .3. 

 

The impression given by Figure A3 indicates that sen-
sitivity was just as good if not better for the minimal 
graphs than the standardized graphs when comparing no 
effect to a small effect (ds = 0 and .3), but sensitivity was 
better (steeper) for the standardized graphs when com-
paring across small, medium, and big effects (ds = .3, .5, 
and .8).  This impression prompted an unplanned analy-
sis.  Linear regressions were again conducted for each 
participant for each graph condition.  However, in one set 
of regressions, only effect sizes 0 and .3 were included.  In 
another set of regressions, only effect sizes .3, .5, and .8 
were included.  Two additional participants were identi-
fied as outliers because the slopes for all three graphs in 
the latter analysis were 1.5 times beyond the interquar-
tile range, and were excluded from the remaining anal-
yses. 

With respect to determining whether or not an effect 
is present (by comparing slopes for graphs depicting ds 
= 0 and .3), all three graph types led to similar perfor-
mance (Standardized: M = .89, SD = .40; Full: M = .49, SD 
= .22; Minimal: M = 1.02, SD = .45).  With all three types 
of graphs, participants were sensitive to whether or not 
there was an effect, as shown by coefficients for each 
graph type that were positive and significantly greater 
than 0, ps < .001. The standardized graph produced 
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some benefit over the full graphs, t(8) = 2.82, p = .022, 
dz = .85, 95% CIs [.14, 1.53], Bayes factor = 3.76.  The 
standardized graph was no better, and marginally worse, 
than the minimal graphs, t(8) = -1.82, p = .11, dz = .55, 
95% CIs [-.10,1.17], Bayes factor = 1.03.  It should be 
noted that a bias to see all effects as being bigger (as 
found with minimal graphs) would lead to a steeper 
slope when comparing just the graphs that depict a null 
effect and a small effect.  Thus, it cannot be known 
whether sensitivity is better with the minimal graphs or 
if the bias caused by the minimal graphs leads to greater 
estimates of sensitivity.   

With respect to determining the magnitude of an ef-
fect that is present (by comparing slopes for graphs de-
picting ds = .3, .5, and .8), the standardized graphs pro-
duced better sensitivity than the full or minimal graphs 
(Standardized: M = .46, SD = .11; Full: M = .09, SD = .06; 
Minimal: M = .25, SD = .13), ps ≤ .001.  The comparison 
between the standardized graphs to the full graphs re-
sulted in a Bayes factor greater than 100, dz = 2.81, 95% 
CIs [1.45, 4.14].  The comparison between the standard-
ize graphs to the minimal graphs resulted in a Bayes fac-
tor of 65, dz = 1.50, 95% CIs [.60, 2.35]. In each of the 
three graph types, participants showed some level of sen-
sitivity to the magnitude of the effect, as shown by the co-
efficients being significantly greater than 0, ps < .003.   

In addition to better sensitivity with the standardized 
graphs, the standardized graphs also produced less bias 
compared with the other graphs, ps <= .001.  For the full 
graphs, there was a 28% bias (SD = 12%) to underesti-
mate effect size, which was significantly different from 0, 
t(10) = -7.82, p < .001, dz = 2.36, 95% CIs [1.17, 3.52], 
Bayes factor > 100.  For the minimal graphs, there was a 
14% bias (SD = 24%) to overestimate the size of the ef-
fect, which was marginally significantly from 0, t(10) = 
2.03, p = .069, dz = .61, 95% CIs [-.05, 1.25], Bayes factor 
= 1.33.  For the standardized effects, the bias was 7% (SD 
= 19%) and was not significantly different from 0, t(10) 
= 1.29, p = .227, dz = .39, 95% CIs [-.23, .99], Bayes factor 
= .58.   

In summary, even with error bars, graphs with the y-
axis range set as a function of the standard deviation pro-
duced better sensitivity and less bias compared with 
graphs that showed the full range and graphs that 
showed only the minimal range necessary to see the data. 

Experiment 4: Line Graphs with Axis Range of 1.4 SD 

The current experiment used line graphs as stimuli in-
stead of bar graphs to see if the previous recommenda-
tions generalized to a different kind of graph. 

Method 

Twenty students in an introductory psychology 
course participated in exchange for course credit.  Stim-
uli were graphs that were constructed by simulating data 
from two groups, and connecting their means with a line 
to create an impression of data across four groups.  The 
four effect sizes that were modeled were Cohen’s d = 0, 
.3, .5, and .8, which corresponds to no effect, a small ef-
fect, a medium effect, and a big effect, respectively.  The 
y-axis range was full (0-100), minimal (smallest value 
minus 1 to largest value plus 1), or standardized (group 
mean minus 0.7 SD to the group mean plus 0.7 SD).  Eve-
rything else was the same as in the previous experiments, 
except the x-axis was labeled as hours spent studying on 
a range from 1-4.   

Results and Discussion 

The data are shown in Figure A6.  The data were ana-
lyzed as before with three separate linear regressions for 
each participant for each graph type for each combina-
tion of all effect sizes, d = 0 and .3 only, and d = .3 - .8 
only.  One participant had slopes greater than 1.5 times 
the interquartile range for the full and minimal graphs, 
and 3 participants had slopes less than 1.5 times the in-
terquartile range for the minimal graphs.  All 4 were ex-
cluded.  

For regressions on all effect sizes depicted in the graphs, 
the standardized graphs lead to greater slopes than the 
full graphs, t(15) = 7.16, p < .001, dz = 1.79, 95% CIs 
[.98, 2.59], Bayes factor > 100 (see Table A1).  The stand-
ardized graphs did not lead to significantly different 
slopes than the minimal graphs when calculated across 
the entire range, t(15) = 0.18, p = .86, dz = .05, 95% CIs 
[-.45, .53], Bayes factor = .26.  However, this is because 
the minimal graphs produced superior performance with 
respect to determining whether there was an effect or 
not but inferior performance when an effect was present 
and the magnitude had to be determined.  For regres-
sions comparing d = 0 to d = .3, the slopes for the mini-
mal graphs were higher than for the standardized 
graphs, t(15) = -4.70, p < .001, dz = 1.17, 95% CIs [.52, 
1.81], Bayes factor > 100.  Again, recall that the bias gen-
erated by the minimal graphs to see effects as bigger 
would produce greater sensitivity scores even if partici-
pants were not necessarily more sensitive to the effect.  
Indeed, the slope coefficient is 1.29, which is greater than 
perfect accuracy of 1, which implies some bias.  For re-
gressions comparing ds > 0, the slopes for the standard-
ized graphs were higher than for the minimal graphs, 
t(15) = 3.05, p = .008, dz = .76, 95% CIs [.19, 1.31], Bayes 
factor = 6.46.  This suggests that the standardized graphs 
still produced better outcomes than the full or minimal 
graphs. 
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Figure A6.  Mean response is plotted as a function of de-
picted effect size and graph type for Experiment 4.  Er-
ror bars are 1 SEM calculated within-subjects. Solid 
lines represent linear regressions for depicted effects d 
≥ .3. Dashed lines represent linear regressions for de-
picted effects less than d ≤ .3. 

 

 

Table A1.   

Mean (and SD) coefficients for the slopes for each graph 
type for each analysis from Experiment 4.   

Graph Type All data ds = .3-.8 ds = 0 - .3 

Full .30 (.08) .15 (.08)   .61 (.22) 

Standardized .61 (.15) .52 (.18)   .86 (.32) 

Minimal .61 (.06) .31 (.25) 1.29 (.56) 

Note. The slopes indicate the linear relationship between the 
size of the effect depicted and the estimate of the effect size, 
both of which were coded on a scale from 1-4. 

 

Regarding bias, similar results were found as in pre-
vious experiments.  The bias was -26% (SD = 11%) with 
the full graphs, indicating a bias to underestimate the ef-
fects, t(15) = -9.52, p < .001, dz = 2.38, 95% CIs [1.39, 
3.34], Bayes factor > 100.  The bias was 19% (SD = 17%) 
with the minimal graphs, indicating a bias to overesti-
mate the size of the effects, t(15) = 4.36, p < .001, dz = 
1.09, 95% CIs [.46, 1.70], Bayes factor = 64.  With the 
standardized graphs, the bias was 2% (SD = 10%), which 

was not significantly different from 0, t(14) = 0.73, p = 
.48, dz = .18, 95% CIs [-.31, .67], Bayes factor = .32.  With 
the line graphs, as with the bar graphs, the standardized 
axis range produced better sensitivity and less bias than 
the full axis range or the minimal axis range. 

Experiment 5: Line Graphs with Axis Range of 1 SD 

The current experiment replicated Experiment 4 us-
ing a smaller axis range for the standardized graphs. 

Method 

Fifteen students in an introductory psychology course 
participated in exchange for course credit.   The stimuli 
were the same as in Experiment 4 except that for the 
standardized graphs, the range was the group mean ± 
0.5 SD.  

Results and Discussion 

The data were analyzed as before with three separate 
linear regressions for each participant for each graph 
type for each combination of all effect sizes, d = 0 and .3 
only, and d = .3 - .8 only.  One participant had a slope that 
was less than 1.5 times the interquartile range for the 
minimal graphs, and one had a slope greater than 1.5 
times the interquartile range for the full graphs.  Both 
were excluded. The mean slope coefficients for the re-
maining participants are shown in Table A2 and the data 
are shown in Figure A7. 

 

Table A2.   

Mean (and SD) coefficients for the slopes for each graph 
type for each analysis from Experiment 5. 

Graph Type All data ds = .3-.8 ds = 0 - .3 

Full .32 (.12) .20 (.13) .58 (.22) 

Standardized .55 (.20) .48 (.17) .76 (.49) 

Minimal .53 (.16) .36 (.25) .96 (.52) 
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Figure A7.  Mean response is plotted as a function of de-
picted effect size and graph type for Experiment 5.  Er-
ror bars are 1 SEM calculated within-subjects. Solid 
lines represent linear regressions for depicted effects d 
≥ .3. Dashed lines represent linear regressions for de-
picted effects less than d ≤ .3. 

 

The patterns match those found in Experiment 4.  Par-
ticipants were more sensitive to the size of the effect for 
the standardized graphs than for the full graphs when all 
trials were included, t(13) = 4.41, p < .001, dz = 1.22, 
95% CIs [.48, 1.94], Bayes factor = 46, and when trials for 
which the effect size depicted was greater than 0, t(13) = 
6.69, p < .001, dz = 1.86, 95% CIs [.93, 2.76], Bayes factor 
> 100, but not when only trials for which the effect size 
depicted was null or small, t(13) = 1.41, p = .19, dz = .39, 
95% CIs [-.18, .95], Bayes factor = .62.  Participants were 
more sensitive to the size of the effect  

 

for the standardized graphs than for the minimal graphs 
but only when the depicted effect in the graph was 
greater than 0, t(13) = 2.59, p = .023, dz = .72, 95% CIs 
[.09, 1.32], Bayes factor = 2.88.   There was no difference 
in sensitivity across all effect sizes, p = .65, Bayes factor 
= .31, and the minimal graphs produced better sensitiv-
ity when only data from graphs depicting a null or small 
effect were included, t(13) = -3.11, p = .009, dz = .86, 
95% CIs [.21, 1.49], Bayes factor = 6.27.  As before, the 
bias created by the minimal graphs could account for this 
apparent increase in sensitivity. 

Regarding the bias, the full graphs produced a bias of 
-15% (SD = 17%), indicating a bias to underestimate ef-
fect size, t(12) = -3.07, p = .010, dz = .85, 95% CIs [.20, 
1.48], Bayes factor = 5.90.  The minimal graphs produced 
a bias of 12%, (SD = 20%), which was marginally above 
0, t(12) = 2.21, p = .047, dz = .61, 95% CIs [.01, 1.20], 
Bayes factor = 1.69.  The standardized graphs led to a 
small bias of 6% (SD = 14%), that was marginally close 
to 0, t(12) = 1.63, p =.13, dz = .45, 95% CIs [-.13, 1.01], 
Bayes factor = .80.   

Across Experiment Comparisons 

Sample size was not selected to achieve sufficient 
power to do analyses across experiments.  To facilitate 
preliminary exploration of the data, the coefficients are 
reported in Tables S3, S4, and S5, and are plotted in Fig-
ure A8 and Figures 2 and 3 in the main text.  It may be 
interesting to note that sensitivity of the size of the effect 
was not notably better with error bars than without er-
ror bars even though error bars are necessary to under-
stand effect size.  Although this may not be surprising 
given the participants being introductory psychology 
student, the pattern is consistent with previous findings 
that many researchers do not know how to interpret er-
ror bars (Belia, Fidler, Williams, & Cumming, 2005).  In 
addition, the lack of noticeable differences in sensitivity 
between the experiments suggests that the use of a y-axis 
range that is approximately 1.5 SDs could help better re-
port the results in cases for which researchers neglect to 
include error bars.   

  

Table A3.   

Mean slopes (and standard deviations) from regressions on all trials for each of the 5 experiments.    

Graph Type Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

Full .28 (.10) .31 (.08) .21 (.08) .30 (.08) .32 (.13) 

Standardized .46 (.13) .54 (.17) .58 (.17) .61 (.15) .55 (.20) 

Minimal .27 (.03) .30 (.06) .49 (.15) .61 (.06) .53 (.16) 

Note. A slope of 1 indicates perfect performance and a slope of 0 indicates chance performance. 
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Table A4.   

Mean slopes (and standard deviations) from regressions on trials for which Cohen’s d > 0.1 for each 
of the 5 experiments.   

Graph Type Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

Full .17 (.10) .18 (.10) .09 (.06) .15 (.08) .20 (.13) 

Standardized .42 (.16) .46 (.16) .46 (.11) .52 (.18) .48 (.17) 

Minimal .07 (.09) .13 (.14) .25 (.13) .31 (.25) .36 (.25) 

Note. A slope of 1 indicates perfect performance and a slope of 0 indicates chance performance. 

 

Table A5.   

Mean bias scores as a percentage (and standard deviations) for each of the 5 experiments.   

Graph Type Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 

Full -27 (5) -28 (9) -25 (10) -26 (11) -15 (17) 

Standardized 1 (4) 6 (9) 14 (13) 2 (10) 6 (14) 

Minimal 36 (21) 31 (21) 23 (16) 19 (17) 12 (20) 

Note. Bias scores were calculated as a percent bias based on intercepts from regressions on all trials 
including those for which Cohen’s d = 0. 

 


